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ABSTRACT

Variability is one of the most salient features of the earth’s climate, yet

quantitative policy studies have generally ignored the impact of variability

on society's best choice of climate-change policy.  This omission is

troubling because an adaptive emissions-reduction strategy, one that

adjusts abatement rates over time based on observations of damages and

abatement costs, should perform much better against extreme

uncertainty than static, best-estimate policies.  However, climate

variability can strongly affect the success of adaptive-abatement strategies

by masking adverse trends or fooling society into taking too strong an

action.  This study compares the performance of a wide variety of adaptive

greenhouse-gas-abatement strategies against a broad range of plausible

future climate-change scenarios.  We find that: i) adaptive strategies

remain preferable to static, best-estimate policies even with very large

levels of climate variability; ii) the most robust strategies are innovation

sensitive, that is, adjust future emissions reduction rates on the basis of

small changes in observed abatement costs but only for large changes in

observed damages; and iii) information about the size of the variability is

about a third to an eighth as valuable as information determining the

value of the key parameters that represent the long-term, future climate-

change state-of-the-world.
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1. INTRODUCTION

With the extreme uncertainty posed by the threat of climate change,

policies for abatement of greenhouse-gas emissions should be adaptive.

That is, decision-makers should pursue abatement policies with the

expectation that they or their successors will make midcourse corrections

based on observations of the relevant environmental and economic systems.

A diverse body of theoretical literature supports this conclusion, including

the sequential decision-making work of Manne and Richels (1992), the

stochastic optimization work of Kelly and Kolstad (1996), and our own

exploratory modeling studies [Lempert, Schlesinger and Bankes (1996),

henceforth LSB].  Adaptive decision-making is also declared policy1, as well

as the actual practice of international and domestic policies.

Climate variability, however, poses a challenge to the design of

adaptive-decision strategies.  Variability is one of the most salient features

of the Earth's climate.  As described by other articles in this volume, global

and regional temperatures, precipitation and storm patterns all exhibit

natural fluctuations over many time-scales, from year-to-year changes, to

variations over decades, centuries, and millennia. This variability can

complicate the identification of anthropogenic climate change.  Since the

climate varies, it is not immediately clear whether or not any specific

observed changes are due to natural causes or human intervention.  Thus,

variability can degrade the performance of adaptive-decision strategies by

reducing their ability to learn quickly from observations.  Variability can
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fool society into taking premature action because a variation is mistaken for

a trend, or can mask an adverse trend until it is too late to respond

effectively.

This study is an initial attempt to examine the impact of climate

variability on the effectiveness and design of adaptive-decision strategies for

greenhouse-gas abatement.  Despite its importance,  this question has

largely been ignored in the analytic policy literature, largely because the

commonly-used tools for decision-making under uncertainty are poorly

equipped to address the impact of climate variability on adaptive-decision

strategies.  Stochastic optimization techniques provide an integrated

framework that includes endogenous learning, that is, learning based on

the observations an adaptive-decision strategy makes of the time-evolution

of the climate and economic systems.  However, stochastic optimization

techniques require restrictive assumptions on the mathematics that

describe the phenomena being studied.  Sequential-decision methods allow

a richer mathematical description of potential decision strategies and the

climate and economic systems. Sequential-decision strategies, however, are

designed to consider exogenous information, that is, information obtained

without reference to the time-evolution of the climate system.

In this study we employ a new analytic framework for decision-

making under conditions of extreme uncertainty – exploratory modeling –

that is well-suited to addressing the impacts of climate variability on the

choice of abatement policies for greenhouse-gas emissions.  Rather than
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focus on a single best-estimate of the future, expressed as either a point

prediction or a known probability distribution, we assume that there are a

wide range of plausible futures of unknown likelihood.  We simulate the

performance of a number of alternative decision strategies over a wide

range of these plausible futures and then search for strategies that best

meet decision-makers goals (Bankes, 1993).  Exploratory modeling combines

some of the best features of both quantitative cost-benefit analysis with those

of scenario-based planning methods (Schwartz, 1996).  Exploratory

modeling is a useful framework for addressing the impacts of climate

variability on policy decisions because it can easily employ models of non-

linear phenomena and provides a means for extracting useful policy

conclusions, even when we are uncertain about important features of the

problem.

In LSB we used the exploratory modeling approach2 to compare the

performance of a single, simple adaptive-decision strategy to the two 'best-

estimate' policies, 'Do-a-Little' and 'Emissions-Stabilization', that are

commonly advocated in today's climate change debate.  As the names

imply, the “Do-a-Little” policy has no near-term emissions reductions and is

similar to that advocated by many opponents of the commitments negotiated

at the Conference of Parties in Kyoto in December 1997.  The ‘Emissions-

Stabilization” policy returns and holds global emissions close to their 1990

levels through 2060 and is  similar to the policies favored by many advocates

of the Kyoto agreement.  Using a linked system of simple climate and

economic models, we compare the performance of these strategies against a
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wide range of plausible climate-change futures, including the possibility of

large and abrupt climate change, technology breakthroughs that radically

reduce abatement costs, and the possibility that climate change turns out

not to be a significant problem.  We found that even a very simple adaptive-

decision strategy on average significantly outperforms either of the best-

estimate policies unless society is highly certain about the climate-change

future (on the order of 95% confident about key parameter values).  This

result is not surprising since the 'Do-a-Little' and 'Emissions-Stabilization'

policies perform well if their underlying assumptions turn out to be valid,

but can fail severely in those cases where their assumptions turn out to be

wrong.  In contrast, the adaptive-decision strategy can make midcourse

corrections and avoid significant errors.

This previous work did not, however, consider the effects of climate

variability.  In this study we add a simple representation of climate

variability and the damages due to this variability to the simulation models

used in LSB.  We also consider several thousand alternative adaptive-

decision strategies, rather than the single adaptive-decision strategy of LSB,

which are distinguished by differing choices for such factors as the rate of

near-term emissions reductions and the sensitivity to trends in the observed

damage and abatement-cost time series.  We compare the performance of

these alternative strategies against a large number of plausible climate-

change futures to address three key policy questions.  First, we want to

verify that the conclusion of LSB, that adaptive-decision strategies for

climate change dominate non-adaptive ones, still holds in the presence of
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climate variability.  Second, we want to understand how expectations about

the impacts of future climate variability should affect a policy-maker's

choice of an adaptive-decision strategy, in particular, the near-term

features of these strategies.  Third, we want to estimate the value of

exogenous information about the variability in comparison to information

about other important climate and economic variables.

As one of the first studies in this area, this study provides only

preliminary answers to these questions.  This study employs a crude

treatment of the factors -- such as climate variability, the damages due to

variability, and adaptive-decision strategies that deal with variability -- that

are most critical to addressing these questions.  For instance, we model

climate variability by red-like noise and the damages due to climate

variability by a simple phenomenological damage function.  We also

consider, similarly to LSB, two-period adaptive-decision strategies that can

make only a single midcourse correction, rather than consider more

flexible and sophisticated adaptive strategies that can make multiple

adjustments in abatement rates over the next century.  As we will discuss

in detail later, these simplifications may affect our judgments about the

effectiveness of alternative adaptive-decision strategies.

Nonetheless, we believe we can draw a variety of interesting and

important conclusions based on this preliminary work.  First, we confirm

that the results of LSB -- that adaptive-decision-strategies dominate

prescriptive policies -- are valid even in the presence of the climate
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variability considered in this study.  Second, we show that policy-makers

can choose among a range of adaptive strategies that perform on average

nearly equally well, but differ in their balance between near-term

abatement rate and the rate at which the strategy tolerates false alarms due

to misreading climate trends.  In general, the slower the near-term

reductions, the less conservative a successful strategy should be in its

criteria for responding to observations.  Third, we find that the most robust

adaptive-decision strategies in the face of climate variability tend to be

innovation-sensitive rather than damage-sensitive.  That is, these strategies

will change their emissions abatement rates in response to small changes

in abatement costs and only very large changes in the damages.  Fourth, we

find that the value of exogenous information about the magnitude of the

climate variability is worth about a third to an eighth as much as

exogenous information that definitively determines the optimum long-term

climate change policy.   Finally, we believe that this initial work provides a

powerful framework for further studies to determine the best climate-

change emissions-abatement policies in the presence of climate variability.

2. DEFINING AN UNCERTAINTY SPACE

In order to address the impacts of climate variability on the

effectiveness and design of adaptive-decision strategies under conditions of

extreme uncertainty, we will compare the performance of a large number

of potential strategies against a large number of plausible climate-change
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futures.  Accordingly, we need to specify a model and a set of input

parameters that define a plausible set of future states of the world.

Traditionally, one uses available data to fix best estimates and/or

probability distributions for such parameters and then predicts the best

policy with the resulting model.  However, the extreme uncertainty

surrounding key aspects of the climate-change problem, such as the

variability and the damages due to climate change, can make this approach

unreliable.  Instead, we look for sets of input parameters that give model

outputs consistent with past trends and other available information, and

then use visualization and search strategies to examine a variety of

adaptive-decision strategies across these sets of plausible parameters in

order to: i) craft strategies that are robust against the uncertainties, and/or

ii) isolate the key uncertainties on which policy-makers should focus.

Similarly to our previous work [LSB; Lempert, Schlesinger and

Hammitt (1994), henceforth LSH; and Hammitt, Lempert and Schlesinger

(1992), henceforth HLS], we consider a linked system of simple climate and

economic models designed to compare the performance of adaptive

strategies against a wide range of plausible climate scenarios.  We use our

energy-balance-climate/upwelling-diffusion-ocean (EBC/UDO) model

(Schlesinger and Jiang, 1991) to simulate the change in global-mean

surface temperature, as a function of the climate sensitivity   ∆T2x, due to

anthropogenic emissions of greenhouse-gas (GHGs) and sulfur dioxide

(  SO2).  The basecase emissions of these gases are given by the IS92a

scenario (Leggett et. al. 1992, henceforth IPCC92), reduced by logistic
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diffusion at some policy-determined rate   1 R  of "fuel-switching"

technologies that decrease the emissions intensity of society's energy-

related capital stock.  Our abatement-cost model (LSB, LSH, HLS) tracks the

emitting capital that must be prematurely retired (assuming a normal

lifetime of 30 years) due to emissions constraints, and determines the

incremental costs of non-emitting capital by   K( ) ( )( )t do o
t ttech= + − − −κ κ κ1 1 ,

where   κ1 and   κo  are the projected costs of emitting and non-emitting stock

(Manne and Richels, 1991; Nordhaus, 1991), d is the rate at which

innovation reduces the incremental cost of the emitting stock, and   ttech  is

the year in which technological innovation begins.

The models used in this study have two key additions to those in our

previous work, a representation of climate variability and the damages due

to climate variability, which we describe here.  A detailed description of the

complete model can be found in Lempert, Schlesinger, Bankes and

Andronova (1998).

2.1. Climate Variability

In order to represent climate variability, we write the radiative forcing

as

  
∆ ∆Q t 6.3334 ln

CD(t)
CD(1765)

F
E t

E 1990
g(t)SO

SO

SO
( )

( )

( )
= 





+








 +E

E 4
2

2

   ,  (1)

where   ECD(t)is the effective carbon dioxide concentration that would give

the same forcing as the actual concentration of carbon dioxide, methane,

and other greenhouse gases;   E tSO2
( ) is the emission rate of   SO2 which is
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converted to sulfate (  SO4 ) aerosols in the atmosphere; and   ∆FSO4
 is the

sulfate-aerosol radiative forcing in 1990.  Climate variability is given by the

Gaussian-distributed noise     g(t) ≈ n ( , )0 σQ . Schlesinger and Andronova

(1997) have calculated a large set of climate sensitivity/sulfate forcing pairs,

using a bootstrap method with their energy-balance-climate/ upwelling

diffusion-ocean model, that reproduce the instrumental temperature record

from 1856 to 1995.  As in LSB, we choose a range of climate sensitivities,

  0.5 C T 4.5 C2x° ≤ ≤ °∆ ; the resulting sensitivity/sulfate-forcing pairs are

shown by the cloud of gray dots in Figure 1.   The bootstrap calculations also

produce a small number of cases with climate sensitivities great than 4.5°C,

which are not shown here.

There are, however, many potential sources of error that could affect

the calculation of these 
  
∆ ∆T F2x SO4

,( ) pairs.  For instance, volcanoes or solar

oscillations could cause the actual sensitivity/sulfate pair to fall outside the

point cloud shown in Figure 1.3  It is thus convenient to summarize the

bootstrap results with a simple analytic expression and write the sulfate

forcing parameter as

 
  
∆

∆ ∆
∆

F
 
 SO

SO
4

41990
0 78 1 8 1 8

0 1 8
2
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2

2
( )

. . .
.

=
− − ° ≥ °
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γ T C for T C
for T C
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x
   ,  (2)

where   γ SO4
 represents the uncertainty in the sulfate forcing.  The value

  γ SO4
1=  reproduces the bootstrap results.
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For each of a large number of 
  
∆T2x SO4

, γ( )  values, we next find the best-

estimate of the associated white-noise climate forcing,   σQ , by regressing

our climate model using each pair against the instrumental temperature

record.  As shown in Figure 1,  the estimate of the noise varies slowly for

  ∆T2x ≥ 1.5°C but increases rapidly for   ∆T2x < 1.5°C.  The noise is smallest

for sensitivity/sulfate pairs near the point cloud.

 This white-noise forcing model does a good job of representing

interdecadal as well as interannual climate variability.  We do not consider

uncertainty in the noise parameter; rather as described below we consider a

wide range of parameters describing the effects of the climate variability,

due to   σQ , on the damages due to climate.

We also model the emission rate of anthropogenic sulfur dioxide in Eq.

(1) by

  
E

for 1861 t 1994

 for t > 1994SO2
( )

( )

( ) ( )

,

,
t

E t

r t F t

SO obs

SO
t

CO
=

≤ ≤

−( )





−

2

2 2
1

1995
η λ

   , (3)

where   E tSO obs2, ( ) is the anthropogenic emission rate of sulfur in the form of

SO2 given by IPCC92 and updated in IPCC 1995,   η( )t  is the ratio of SO2

emissions to carbon dioxide emissions in the IS92a estimate and   rSO2
 is the

rate at which sulfur-dioxide  emissions may deviate from the IS92a

estimate.  We include   rSO2
, the deviation from the IPCC SO2emissions
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trajectory, because sulfur dioxide has  significant environmental impacts,

such as acid rain, independent of its role in climate change, and thus may

be subject to different policy pressures and technological innovation than

greenhouse gases.  We use two value of the sulfur-dioxide  reduction rate,

  rSO2
0= % which reproduces the IPCC trajectories, and   rSO2

2= % which

gives sulfur-dioxide emissions roughly constant at 1995 levels over the next

thirty years.  This later case is similar to those considered by Wigley,

Richels and Edmonds (1996)  and others.

2.2. Damages Due to Variability

In this study we use a simple, phenomenological damage function

designed to capture, in aggregate, some of the impacts of climate variability

and the ability of society to adapt to changes in variability.  We write the

annual damage in year t as

  
D t

T t
C

T t T t
C

T t T t
C
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   ,  (4)

where   ∆T t( ) is the annual global-mean surface temperature change, and

  ∆T5 ( )t  and   ∆T30 ( )t  are the 5-year and 30-year running averages of   ∆T t( ).

The second and third terms on the right-hand side of Eq. (4)  represent the

damages due the variability of climate.  The second term represents those

impacts due to changes in the variability of the climate system that society

and ecosystems can adapt to on the time-scale of a year or two.  The third

term represents those impacts that society and ecosystems adapt to more
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slowly, on the order of a few decades, and thus are sensitive to both the year-

to-year variability and the secularly increasing trend in temperature.  The

first term represents the damages due to a change in the global-mean

surface temperature and is similar to the power-law functions used in most

simple damage models in the literature.  In this study we can view this

term as representing impacts that society and ecosystems adapt to on

century-long time scales.4

We can better understand the effects of these two variability terms by

examining the stochastic properties of the global-mean temperature as

generated by our energy-balance-climate/upwelling-diffusion-ocean  model

for the forcing of Eq. (1).  Figure 2 shows the cumulative probability

distributions for   ∆T t( ) and the three terms in Eq. (4),   ∆T5( )t ,   ∆ ∆T T( ) ( )t t− 5 ,

and   ∆ ∆T T( ) ( )t t− 30 , for the year t = 1995, over an ensemble of 500 Monte

Carlo runs.  The curves in this figure were calculated using

  
∆ ∆T F2x SO4

, ( ),1990 σQ( ) = 
  
2 5 0 7 3 2. , . , .° −( )C  W m W m2 2 . The curves for other

values of the climate parameters are similar.  Note that the average global-

mean temperature change   ∆T t( ) varies by 0.5°C between its 5% and 95%

confidence levels, consistent with the up to 0.4°C  annual variation in the

instrumental temperature record from which our noise term   σQ  was

derived.  The distribution for the five-year average   ∆T5( )t  has a somewhat

smaller range, depressed by about 0.1°C at the 95% confidence level, due to

the effects of the secularly increasing trend in temperature.  The

cumulative probability curves for   ∆ ∆T 1995 T 1995( ) ( )− 5  and
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  ∆ ∆T 1995 T 1995( ) ( )− 30  are nearly parallel, but the latter has its 50%

likelihood level at 0.2°C while the former has a 50% likelihood at the smaller

value of 0.05°C.  Thus we see the   ∆ ∆T T( ) ( )t t− 5  term responds mostly to the

effects of the year-to-year variability, while the   ∆ ∆T 1995 T 1995( ) ( )− 30  term is

sensitive to both the year-to-year variability and the secularly increasing

trend in temperature.

Little systematic information is available to constrain the choice of

values for the damage function parameters in Eq. (4).  A large body of

research on impacts due to climate change suggests that damages due to

climate change would not be larger than about 1% to 2% of GWP.  Other

researchers argue, however, that the impacts might be significantly larger,

either because of effects inadequately treated in most analyses or because

future generations may place a high value on non-economic loses, such as

changed ecosystems, due to climate change.  At least some of the political

concern about the climate-change problem is motivated by worry about the

risk of such unpredicted and potentially severe damages.  In this study we

use a very wide range of plausible damage estimates in order to support the

argument that a simple adaptive-decision strategy can be robust against

both very small and very large damages.

We can place very rough constraints on the parameters in Eq. (4) by

requiring the function to be consistent with past observations.  We first note

that year-to-year the damages associated with climate-related phenomenon

such as El Niños and large-scale natural disasters are on the order of a few
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tenths of a percent of GWP.  Thus, whatever damages due to climate change

have occurred in the last few years and decades, they cannot have been

more than a few tenths of a percent of GWP, otherwise we would have

observed unambiguous evidence of damages to date.  This information

places only loose constraints on the first term in Eq. (4).  With

  ∆T5 1995 0 5( ) .= °C, we can write   α
η

1 0 1 6 1≤ ⋅. % .  As in LSB, we choose a

cubic term for the damages due to the change in temperature,  η1 3= , which

corresponds to a range for the damage coefficient 0%   ≤ ≤α1  20% GWP.

We can also use available time series data on economic losses from

large-scale natural disasters to place rough constraints on the variability

coefficients and exponents,   α2 ,  α3 ,   η2 and  η3.  In recent years the number of

large-scale natural disasters causing widespread economic loss has been

on the rise, though the year-to-year variation in damages varies

considerably (Munich Re Reinsurance, 1997).  Since 1960 such disasters

have shown only a small trend upwards, measured as a fraction of GWP.

In 1996 over 500 large-scale events (excluding earthquakes) caused $60

billion (0.2% GWP) in damages, one of the largest years on record.5   We find

that the cumulative probability distribution produced by the last two terms

in Eq. (4), using the parameters   α α2 3 0 2+ = . % GWP and  η η2 3 1= = ,

provides a reasonable fit to the 35 data points of the Munich Re time series

of economic losses due to large-scale natural disasters.

Figure 3 compares the Munich Re time data to the distribution of

damages generated by our model over an ensemble of 500 Monte Carlo runs

for the year 1995 using the climate parameters 
  
∆T2x, ,γ σSO Q4( )=

  
2 5 1 3 2 2. , , .°( )C W m  and three sets of damage parameters.  We define “Low
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Variability” as the parameters   α α η η2 3 2 3, , ,( ) =    0.2%,0%,1,na( )  which, as

seen in Figure 3, closely matches the Munich Re data.  We define the  “High

Variability” and “Increasing Variability” cases to have parameters

  0.4%,0%,2,na( )  and   0 0 33 3%, . %, ,na( ) , respectively.  The resulting damage

distributions are nearly identical in 1995 and have the same 50% likelihood

value as the Munich Re data, though the damages for high cumulative

probabilities are much larger.  We argue that the 'High' and 'Increasing'

damage cases are plausible fits to the observed data because: i) this

extreme-event data may significantly underestimate the damages due to

climate variability, or ii) chance may have spared society over the last 35

years the low-probability/high-impact damages represented by the right-

hand side of the curves in Figure 3.  The damages in the “High Variability”

case are largely insensitive to increasing concentrations of greenhouse

gases, and thus cannot be affected by any emissions abatement policy.  The

damages in the “Increasing Variability” case grow with greenhouse-gas

concentrations and thus can be affected by policy choices.  Figure 3 also

shows the damages in 2020 for the “Increasing Variability” case given the

IS92a emissions.

Our damage model does have important shortcomings.  Among the

most important for this study is that the white-noise forcing, the driver of

the variability in our model, is a fit to the instrumental temperature record

and does not change as we run our simulations into the future.  Thus, the

damage distribution due to the   ∆ ∆T T( ) ( )t t− 5  variability term does not

change over time and the damage distribution due to the   ∆ ∆T T( ) ( )t t− 30

term increases only due to increases in the rate of change in the 30-year

average temperature, though in fact we expect that changes in variability
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are more important than changes in the mean (Katz and Brown, 1992;

Mendelsohn et. al., 1994).  In addition, the extreme-event data used to

constrain our damage-function parameters are due at least in part to

trends in society's susceptibility to natural disasters rather than to any

change in the size or frequency of the natural disasters themselves and,

conversely, are only one component of the damages due to climate change.

Nonetheless the  crude phenomenological damage function in Eq. (4)

provides a sufficient foundation to support our initial explorations of

alternative abatement strategies and the impacts of variability on near-term

policy choices.

3.4 Scenarios

So far we have defined a model and identified the space of input

parameters such that model outputs are consistent with available data.

Given our computational limitations,6 we now need to choose a set of about

60 uncertainty-space points that reasonably span the space of all plausible

points, consistent with our purpose of comparing the performance of

potential adaptive-decision strategies.  Table I shows the points we use,

chosen to best address the key policy questions posed in this study.   We

consider 20 different combinations of climate sensitivity, sulfate forcing,

innovation parameters, and damage coefficient   α1, where each point is

labeled with a vector 
  
∆T , ,d2x 1, γ αSO4( ) .  For each of these uncertainty space

points we consider three damages due to variability cases, "Low", "High"

and "Increasing".
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We use two criteria in selecting this sample of uncertainty-space

points.  First, we demand that the points sample the full range of plausible

values for each parameter.  For instance, among the 20 points shown in

Table I there is one instance of   ∆T x2  = 0.5°C, three instances of 1.5°C, ten of

2.5°C, four of 3.5°C, and two of 4.5°C; seven instances of the innovation

parameters, d = 0% and 2%, and six instances of d= 5%; and six different

values of   α1: three instances each of 0%, 3.5%, 5%, four instances of 7%; five

instances of 2%; and two of 10%.  We also include two values of the sulfate

forcing,   γ SO4
= 0.25 and 1.0, for each value of the climate sensitivity greater

than 1.5°C.  (For   ∆T x2  = 0.5°C and 1.5°C, Eq. (2) gives the same sulfate

forcing   ∆F O4S ( )1990  for any value of   γ SO4
.)

Second, we demand that our sample of uncertainty-space points be

spread relatively uniformly across a large range of different future states of

the world.  It is convenient to group such futures according to the optimum

climate-change policy society would follow if it had perfect information.  I n

LSB we considered the performance of three static (non-adaptive) policies:

'Do-a-Little', similar to the policy favored by many climate-change skeptics;

'Emissions-Stabilization Policy', which returns and holds global emissions

to their 1990 levels through 2060; and a Drastic Reductions Policy of

immediate and draconian emissions reductions that would be appropriate

for some combination of very large damages due to climate change and very

rapid innovation-induced reductions in abatement costs.  In this study we

compare the performance of these three static policies for each of the 60

points and label each point with the lowest cost of the three policies.  These

groupings are shown in Table I.  The 60 uncertainty-space points give 15, 20,
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and 25  instances of DAL, ES and DR futures, respectively.  We believe that

the results presented in the next section are relatively insensitive to the

precise choice of uncertainty-space points considered here.

3. CHOOSING A STRATEGY

We can now address the problem of a decision-maker trying to craft a

policy response to the threat of climate change in the face of climate

variability and extreme uncertainty about this variability and the costs and

benefits of various climate-change strategies.  In the language of Section 2,

the decision-maker is uncertain about which of the uncertainty-space

points is the most accurate representation of the future or what probability

distribution to lay across these points.  In reality the "decision-maker” is

also a collection of many individuals who hold a wide variety of very

different expectations about the relative likelihood of these uncertainty-

space points.  In the presence of this uncertainty and of climate variability,

should the decision-maker use an adaptive strategy?  If so, what should be

the near-term features of such a strategy?  What information would be most

valuable in improving the performance of an adaptive-decision strategy?

3.1. When to Choose an Adaptive Strategy

In LSB we compared the performance of a single adaptive-decision

strategy to that of two static policies as a function of a decision-maker's

expectations about the climate-change future.  We found that in the absence

of climate variability even a very simple adaptive strategy dominated the

static policies unless one was virtually certain about the future state of the
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world.  In this work we compare the performance of a large number of

adaptive-decision strategies to each other and to the performance of two

static policies.  We find that in the presence of climate variability, adaptive-

decision strategies generally dominate static policies, but that in some cases

the variability so degrades the performance of the adaptive strategies that a

decision-maker should choose a static policy.

We consider simple, two-period, threshold-based adaptive-decision

strategies similar to those used in LSB that can respond to a policy-maker's

estimate of any trend in damages based on annual observations of the noisy

time series D t( ). We calculate this estimate, D test ( ), using a linear, discrete-

time Kalman filter (Lewis, 1986) -- a Bayesian estimator that rapidly detects

any statistically significant trend in the damage time series.  As shown in

Figure 4, our adaptive strategies begin with a pre-determined abatement

rate   1 R1 and can switch to a second-period abatement rate   1 R2  in the

year,   ttrig , when either the damages exceed, or the abatement costs drop

below, some specified target values.  The logistic half-life   R  represents the

years needed to reduce emissions to one-half the basecase.  The damage

target (in % GWP) is given by D test ( )>Dtrend   and the abatement-cost target

(in $/ton carbon abated) is given by   K(t) < Kthres .  The second-period rate

depends on the year   ttrig .  If   t <trig T1, then the second-period abatement is

given by   R R2 2 1= / .  If   T T1 2≤ t <trig , the second-period abatement is

  R R2 2 2= / .  If neither condition is met by the year   T2, the strategy switches

to a second-period abatement   R R2 2 3= / .  In practice such strategies would

certainly be more complex, but the simple version used here is sufficient for
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an initial treatment of the effects of climate variability on the design and

effectiveness of adaptive strategies.

We express the decision facing policy-makers as a choice among the

eight parameters defining the adaptive-decision strategies used in this

study.  We chose from among a discrete set of values for each parameter

that allows us to explore a large range of potentially interesting adaptive

strategies while remaining within our computational limitations. In order

to focus on the near-term features of the adaptive strategies, as shown in

Table II we examine 4 possible first-period rates, 8 damage triggers, 5

innovation triggers, 2 alternative combinations of second-period rates, 4

possible earliest trigger years, and 4 possible latest trigger years, for a total

of 5,120  different adaptive-decision strategies.  Our results in this study

appear insensitive to additional parameter combinations.  For instance, we

examined many cases in which we included additional parameters for the

second-period rate and for the earliest and latest trigger years.  In no case

was there any significant change in the results reported here.

Figure 5 compares the regret for a number of adaptive-decision

strategies to the regret for the static DAL and ES policies as a function of

  pES, the likelihood ascribed to the ES future, in the case with low SO2

emissions (  rSO2
= 2%) and where the decision-maker ascribes no likelihood

to a DR future (  pDR = 0%).  We measure the performance of an adaptive-

decision strategy using its 'regret', defined as the difference between the

expected cost of the strategy for a given expectation about the future and the
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expected cost of choosing the best strategy if the future state of the world

suddenly became known.  (See the appendix for the mathematical

description of the regret).  The upper, middle and lower panels show the

cases with "Low Variability", "High Variability" and "Increasing

Variability", respectively.  Each adaptive-decision strategy is labeled with its

  R ,D ,K1 thres thres( ) values.  We show only those strategies that have the

smallest regret for some value of   pES.7  The best choice for each value of   pES

is shown by the thick line.

This figure shows that the best choice of climate-change policy

depends strongly on the damages due to climate variability.  For 'Low'

damages due to variability, at least one of the adaptive-decision strategies is

dominant over the DAL and ES static policies over a wide range of

expectations about the future, 2%   ≤ ≤pES  81%.  However for 'Increasing'

damages due to variability, the static ES policy dominates any adaptive-

decision strategy over a wide range of expectations,   pES >20%.

Climate variability degrades the performance of the adaptive strategies

relative to the static policies because it masks any trend in the observed

damage time series.  For instance, Figure 6 compares the estimated

damage   D test ( )  and the  actual damage D t( ) for two cases, the first with

'Low' damages due to variability and significant trend (  α1 = 3.5%) and the

second with 'High' damages due to variability and no trend (  α1 = 0%).  The

Bayesian estimator does a reasonably good job of tracking both damage time
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series, but because of the high variability the estimates for the trend and no-

trend cases do not diverge until about 2020.  Thus, an adaptive-decision

strategy attempting to distinguish between these cases based on

observations of the damage time series would have to wait at least two

decades before being able to act.  In contrast, the static DAL and ES policies

are insensitive to the variability.  Since they make no observations, these

policies cannot be affected by false signals, and thus the variability only

affects the variance of their regret (not shown here), not the mean.

Perhaps not surprisingly, as the uncertainties proliferate, the

adaptive-decision strategies become the dominant choice independent of the

variability. Figure 7 compares the regret for a number of adaptive-decision

strategies to the regret for the static DAL and ES policies as a function of

  pES in the case where uncertainties about the sulfate forcing and DR future

now play a role.  This figure assumes high SO2 emissions (  rSO2
= 0%), so

that different values of   ∆FSO4
1990( )  will affect the results, and a small

chance (  pDR = 2%) of a DR future.  The regrets for the adaptive strategies

are similar to those in Figure 5, but the regrets of the static policies are

significantly larger.  For instance, the upward shift of the   pES = 0% and

100% intercepts for the DAL and ES policy regrets is due to the fact that the

static policies are more sensitive to a small probability of a DR future than

the adaptive-decision strategies, because the latter are able to respond to the

onset of a very large damage trend.  We thus find that the results of LSB

hold, even when climate variability is large, if there is significant
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uncertainty about sulfate forcing and/or  even a small chance of a drastic

future.

3.2. Which Adaptive Strategy to Choose

Figures 5 and 7 also show that the particular adaptive-decision

strategy a decision-maker should choose depends strongly on the climate

variability and his or her expectations about the relative likelihoods of the

DAL and ES futures.   Not surprisingly, the first-period rate of the best

adaptive-decision strategy depends most strongly on the probability ascribed

to the ES future.  For instance, for 'Low' damages due to variability in

Figure 5,   R1 = ∞  for   2% p 10%ES≤ ≤ ,   R1 = 100 years for   10% p 57%ES≤ ≤ ,

and   R1 = 60 years for   57% p 81%ES≤ ≤ .  We see similar patterns in all the

panels of Figures 5 and 7 (except for the bottom panel of Figure 5).

The damages due to climate variability also affect the first-period rate

of the best strategy, decreasing   R1 from 100 years to 60 years as we go from

'Low' to 'High' variability in the region near   pES = 50% in Figure 5, and -

from ∞ to 60 years as we go from 'High' to 'Increasing' variability in the

region near   pES = 10%.  However variability has its largest impact on the

damage threshold,   Dthres, of the best adaptive-decision strategies.  For 'Low'

variability case in Figures 5 and 7, all the lowest regret strategies have

  Dthres = 0.4% GWP, which nearly doubles (Figure 5) or triples (Figure 7) for

'High' damages due to variability.  These higher thresholds are necessary

to reduce the risk that the strategy will mistake large random fluctuations
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as the onset of an adverse trend in the damages.  However, this higher

threshold delays the detection of real damage trends, and thus degrades the

performance of the strategies.  For instance,   60 0 75 65, . %,$( ) , the best

strategy for 'High' variability and   24% p 56%ES≤ ≤  in Figure 5, has a

  pES=56% regret of $22 billion/year, over a third larger than that of

  60 0 4 40, . %,$( ), the most cost-effective strategy for 'Low' variability and

  57% p 81%ES≤ ≤ , with a   pES=57% regret of  $16  billion/year.8

The most significant difference between the strategies in Figures 5 and

7 is the height of the damage thresholds,   Dthres.  This difference is due to

the high SO2 emissions in the latter figure, rather than to a plausible

drastic future.  Higher SO2 emissions reduce the rate of temperature

increase for a given climate sensitivity, and thus reduce the damages due to

climate change.  All other things being equal, a decision-maker uncertain

about the size of the sulfate forcing (ascribes relatively equal probabilities to

  γ SO4
 = 0.25 and 1.0) will expect a lower probability of very high damages in

the case of high SO2 emissions than in the case of low SO2 emissions.  Thus,

in the former case it is better on average to raise the damage threshold,

sacrificing some ability to rapidly detect large trends, in order to reduce the

rate of false alarms.
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3.3. Robust Adaptive Strategies

Until now we have considered the situation where the variability is

known and where the decision-maker has a definite expectation about the

relative likelihood of the DAL and ES futures.  In practice, decision-makers

do not know the damages due to climate variability, nor is there widespread

agreement about the relative likelihood of different climate-change futures.

Much of the political debate about climate-change policy is dominated by

stakeholders who hold very different expectations about these issues.

In such a situation it may be useful to employ a climate-change

strategy that is insensitive to the probabilities a decision-maker ascribes to

the size of the damages due to variability or to the various climate-change

futures.  Such robust adaptive-decision strategies should perform relatively

well in any possible climate-change future.

In the case of high SO2 emissions, the most robust strategy is

  60 1 2 65, . %,$( ).9  Figure 7 shows the regret for this strategy (heavy dashed

lines) as a function of   pES.  This strategy is the best choice for a decision-

maker who ascribed equal likelihoods to the DAL and ES futures in the

‘High’ and ‘Increasing’ variability cases and close to the best in the ‘Low’

variability case.  With its high damage threshold,   Dthres = 1.2%, the strategy

responds primarily to trends in abatement costs, switching rapidly to a

second-period abatement rate of   R2 = 40 years when innovation reduces the

costs of abatement (innovation parameter d = 2% and 5%).  If abatement
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costs do not fall, the strategy can increase its abatement rate if damages

rise rapidly to the high damage threshold.  Otherwise, the strategy reduces

its abatement rate to   R2 = 150 years.  The choice of this strategy is relatively

insensitive to the probability ascribed to the DR future, which can range

from 0% < pDR ≈  15% before a decision-maker should choose a different

strategy,   40 0 75 50, . %,$( ).  We also find a similar robust strategy,

  60 0 75 65, . %,$( ) , in the case of low SO2 emissions.  As is generally the case

for low SO2 emissions, this strategy adopts a lower damage threshold,

  Dthres = 0.75%, compared to the case with high SO2 emissions.

Given the intense political focus on near-term emissions reductions, it

is important to note that a decision-maker can also craft a robust strategy

with a slower near-term abatement rate.  As shown in Figure 7, the

strategy   100 1 2 65, . %,$( )  performs nearly as well as the faster-starting

  60 1 2 65, . %,$( ) in the case of high SO2 emissions.  Similarly for the case of

low SO2 emissions, the strategy   100 0 6 65, . %,$( )  performs nearly as well as

the faster-starting   60 0 75 65, . %,$( ) .  The former strategy compensates for

slower near-term abatement by slightly increasing its sensitivity to large,

adverse trends at the cost of slightly increasing its susceptibility to false

alarms.  Thus, policy-makers can choose among strategies that perform

similarly, on average, by trading off among near-term emissions abatement

rate and the risk of erroneously responding to a false trend, as determined

by the sensitivity of the damage threshold.
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It is also interesting to note that in the face of potentially large

damages due to climate variability, the most robust adaptive-decision

strategies are "innovation-sensitive" rather than "damage-sensitive."  That

is, these robust strategies will change to their second-period abatement rate

based on small observed changes in innovation-reduced abatement costs,

but only for large observed changes in climate damages.10

3.4. Value of Information

Adaptive-decision strategies use endogenous-information-based

observations to make their decisions.  However, other sources of

information are also available to aid decision-makers.  In particular,

several studies have examined the value of exogenous information in the

context of choosing fixed or sequential strategies for abating climate change

(Peck and Teisberg, 1993; Nordhaus, 1994).  In contrast to the endogenous

observations shown in Figure 4, exogenous information generally

represents new scientific information, gained independently of any induced

changes in the systems being studied, that improves our estimates of key

model parameters.

Here we examine the value exogenous information has for a decision-

maker choosing an adaptive-decision strategy in the face of uncertain

climate variability.  In contrast to previous studies, we can estimate the

value of exogenous information as a function of climate variability, which

affects the rate of endogenous learning, as well as estimate the value of
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information about the variability itself.  The value of information about the

variability is an important question, because at present most climate-

change impacts research is focused on predicting the long-term damages

from climate change rather than on characterizing the damages due to

variability.

We calculate the value of exogenous information for an adaptive-

decision strategy by: i) searching for the best strategy for each of a set of

particular climate-change futures, and ii) searching for the best adaptive-

decision strategy assuming a specific probability distribution over the set of

futures.  The expected value of information is then given by the expected

value (assuming the probability distribution) of the difference in regrets for

each future between the strategies found in i) and ii). For instance, imagine

a decision-maker sure that SO2 emissions will be low, damages due to

variability will be low, and a drastic future is implausible, but who ascribes

equal likelihood to the DAL and ES futures.  From the upper panel of Figure

5 we see that information distinguishing the DAL and ES futures would be

worth $15 billion/year, since without it, the decision-maker's best choice is

the strategy   100 0 4 65, . %,$( ) , with a   pES=50% regret of $15 billion/year.

In general the value of information distinguishing the DAL and ES

future states of the world is about $22.5 billion/year for a decision-maker

who ascribes equal likelihoods to 'Low', 'High', and 'Increasing' variability

(labeled 'Unknown Variability' in Figure 8), in the case of low SO2
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emissions, and is $16 billion/year in the case of high SO2 emissions.  We

focus in this figure on the case of a decision-maker who ascribes equal

likelihoods to the DAL and ES futures, who knows whether SO2emissions

are high or low, and who ascribes a 0% probability to a drastic climate-

change future.  We also focus in this study on exogenous information that

becomes available immediately, as opposed to that which becomes available

at some later time in the future.  The value of information is higher in the

case of low SO2 emissions because, as discussed above, the adaptive-decision

strategies work relatively better in the case of high SO2 emissions.  A s

shown in Figure 8, when the decision-maker knows the damages due to

climate variability, we see that the value of information distinguishing the

DAL and ES futures is about 30% higher for 'High' variability than for

'Low' variability, because the adaptive strategies perform better in the latter

case.

 Figure 9 shows the expected value of information (EVOI) about the

climate variability to a decision-maker who ascribes equal likelihood to both

the DAL and ES futures, as well as equal likelihood to the Low, High and

Increasing Variability cases. Comparing the EVOI of the Low and High

SO2 Emissions/No Drastic cases in Figure 9 with the EVOI of the Low and

High SO2/Unknown Variability cases in Figure 8, we see that information

distinguishing the variability cases is about one-third as valuable as

information distinguishing between the DAL and ES futures in the case of
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low SO2 emissions, and one-eight as valuable in the case of high SO2

emissions The possibility that the variability may be 'Low' makes a

significant contribution to the expected value of information, independent of

the decision-maker's expectations about the SO2 emissions or the possibility

of a DR future, because proof of 'Low' variability would  allow the decision-

maker to choose a strategy with a low damage threshold.  For instance, in

the low SO2 emissions case, a decision-maker who learns the variability is

'Low' can choose the strategy   100 0 4 65, . %,$( )  (Fig. 5), which performs $9

billion/year better than the high-damage-threshold strategy,

  60 0 75 65, . %,$( ) , that hedges against all three variability cases.  Similarly,

information which proves the variability is 'Increasing' is also valuable in

the case of low SO2 emissions.

In contrast, the possibility that the variability is 'High', or that the

variability may be 'Increasing' in high SO2-emissions cases, does not make

a significant contribution to the expected value of information, since proof of

'High' of 'Increasing' variability does not change the decision-maker's best

strategy.  Information that guarantees a drastic climate-change future is

implausible (  pDR = 0% rather than 2%) is also worth little except in the case

of low SO2 emission and 'Increasing' damages due to variability, because

only in this case does this information make a significant difference to a

decision-maker's choices.  However, information that guarantees that the

probability of a drastic future is less than approximately 15% is valuable
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because this information will make a difference in the choice of an

adaptive-decision strategy.

4. CONCLUSIONS

This study is one of the first that examines the choice among

alternative, adaptive climate-change strategies in the face of climate

variability.  We find that adaptive-decision strategies remain preferable to

static, best-estimate policies even with very large levels of climate

variability; that the most robust strategies are innovation-sensitive, that is,

adjust future emissions-reduction rates on the basis of small changes in

observed abatement costs but only for large changes in observed damages;

and that information about the size of the variability is about a third to an

eighth as valuable as information determining the value of the climate

sensitivity, sulfate forcing, damage, and technology innovation parameters

that represent the long-term, future climate-change state-of-the-world.

We have made a number of important simplifications in this study

that place caveats on these conclusions and influence any suggestions we

can provide to policy-makers about the design of effective and robust

adaptive-decision strategies.  Perhaps most importantly, our representation

of climate variability is invariant over time and may under-represent

longer period fluctuations, while our representation of damages due to

variability clearly ignores the effects of variations in climate factors other

than temperature (such as precipitation).  These omissions will likely
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understate the effects of variability on adaptive strategies.  In contrast, we

have considered adaptive-decision strategies that make only a single

midcourse correction.  This assumption will likely overstate the impact of

variability on adaptive-decision strategies because in reality, a strategy can

make at least several important midcourse corrections over the next

century.  On balance, it is unclear whether more sophisticated adaptive

strategies will perform better or worse for a more complete representation

of variability than do the simple adaptive strategies against the simple

variability considered here.  This question, among others, is an important

one for further research.

Despite these shortcomings, we believe this study provides two

important inputs for climate-change policy-makers.  First, the study

suggests that the climate-change-impacts research community should

place relatively more effort on characterizing the variability due to climate

change and its effects.  There is a large, worldwide research effort devoted

to predicting the long-term damages due to climate change.  However,

relatively little effort seems to be devoted to collecting and assessing

information on variability.  We can only offer anecdotal evidence on this

score.  But while developing the crude representation of the damages due to

climate variability used in this study, we were unable to find the answer to

this straight-forward and extremely policy-relevant question:

“Assume decision makers came to an agreed-upon definition

of damages due to climate change and the scientific
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community reported annual estimates of these damages based

on the data collected by satellites, terrestrial monitoring

stations, and all other sources.  Assume further there were no

anthropogenic climate change.  What would be the magnitude

and stochastic properties of the damage estimates reported

each year?”

If we had the answer to this question, it would be relatively easy to

conduct an analysis such as the one in this study and find the adaptive-

decision strategies (or the prescriptive policies) that perform best against

this level of variability.  Much of the scientific information needed to

address this question may already exist, but no one in the integrated-

assessment community has yet compiled it into a useful form.  This study

suggests that this would be a very useful thing for policy-makers to ask the

integrated-assessment community to do.

Second, this study provides some tentative suggestions about the

design of the particular adaptive-decision strategies policy-makers should

employ.  The current Framework Convention on Climate Change requires

that the developed nations reduce their greenhouse-gas-emissions to 5%

below their 1990 levels by 2010.  It is difficult to relate this target directly to

the results of our model because we consider global aggregate emissions

while Kyoto distinguishes between the emissions of developed and

developing nations, and because our focus on long-lived capital stock limits

the range of emissions reductions we can consider in 2010.  Nonetheless,

the Kyoto targets roughly correspond to a near-term abatement rate in our
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model of   R1 = 100 years, which we find to be a reasonable choice for

decision-makers who believe there is any significant probability that the

best climate-change strategy will ultimately require emission stabilization.

In addition, this study suggests that the rate of near-term reductions,

while important, is not the sole, dominant factor determining the success of

an adaptive-decision strategy.  In particular, for any given set of

expectations about the future, there is a trade-off between the near-term

emissions-abatement rate and the sensitivity with which the strategy

responses to potential trends in damages due to climate change.  Thus,

faced with stakeholders reluctant to commit to aggressive near-term

reductions, policy-makers may have the flexibility to craft a robust adaptive-

decision strategy by encouraging those stakeholders to agree to a program

of environmental and technology monitoring, and to commit beforehand to

a particular aggressive response if in the future certain trends were

detected by such monitoring.

Our study also suggests that variability might mask any damage trends for

at least several decades.  Thus, independent of the rate of near-term

emissions abatement, the most robust adaptive-decision strategies in the

presence of climate variability will be innovation sensitive, that is, will

change future abatement rates based primarily on observations of small

changes in abatement costs, and be sensitive only to relatively large trends

in the damages due to climate change.
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1   The United Nations Framework Convention on Climate Change recognizes that steps
to address climate change will be most effective if continually re-evaluated in the
light of new information.

2  In addition to LSB, exploratory modeling has been widely used in a number of policy
studies, including studies of science and technology investment portfolios (Lempert
and Bonomo, 1998), the future of California higher education (Park and Lempert,
1998), weapons procurement decisions for the Air Force (Brooks, Bankes and Bennett,
1997), and military strategy (Davis, 1997a, 1997b).

3  It is also plausible that sensitivity and sulfate forcing are not constant, but depend on
temperature.

4  We have chosen the normalization factors in the denominators in Eq. (4) so that the
coefficients have straightforward interpretations.  The coefficient   α1 represents the
damages due to a 3°C increase in the global-mean temperature, and the coefficients

  α2  and  α3  represent the maximum damages due to climate variability in 1995 at the
90% confidence level, as seen from Figure 2.  All three coefficients are measured i n
units of percent of GWP.

5  In 1996, large-scale events caused $180 billion (0.6% GWP) in damages, but much of
this was due to the Kobe earthquake.

6  The results in this paper required about three weeks of CPU time, or six  million calls
to our linked system of models.  We considered 20 Monte Carlo runs for each strategy-
uncertainty space combination and (as described in Section 3) 5,120  strategies.  This
allows us about 60 scenarios.  We have verified that our results are insensitive to this
relatively small number of Monte Carlo runs.

7  We find these strategies with a two-step screening process.  First, we screen for
strategies that are relatively robust by searching for the strategy with the lowest ES
regret,   R Z 100%,0%j( ), among those strategies with a DAL regret,   R Z 0%,0%j( ) , less
than some given value. (These symbols are defined in the Appendix.) We use a series
of DAL regrets in $5 billion/year increments starting with $2.5 billion/year.  We use
this first screen because we assume that a decision-maker, choosing among
alternative strategies that perform nearly equally well in the future they expect to be
most likely, will prefer that strategy that will also perform well in the future they
consider least likely.  Second, we plot the regrets of  the strategies remaining after the
first screen and discard those that do not give the lowest regret for some values of   pES .

In the case of low SO2 emissions, the results for   γ SO4
= 0.25 and 1.0 are similar, so we

only use the 36 uncertainty space points with   γ SO4
 = 1.0.

8 Using the notation in the appendix, the former regret is   RHigh Z 56%,0%j( ) = $22

billion/year and the later is   RLow Z 57%,0%j( )= $16  billion/year.
9  Our robustness criteria is defined in the Appendix.
10  A strategy with relatively large numbers for its damage and abatement cost

thresholds is sensitive to small changes in abatement costs and only large changes i n
damages because we model damages as currently small and potentially increasing
and abatement costs as currently high and potentially decreasing.
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APPENDIX

In Section 3 we consider the regret costs of adaptive-decision

strategies and static policies.  This appendix describes how we calculate

these regrets.

As shown in Table I, we begin by assigning each uncertainty-space

point   Xi = 
  
∆T d2x SO4

, , ,γ α1( )  to one of the exclusive sets of 'Do-a-Little' (DAL),

'Emissions-Stabilization' (ES) or 'Drastic Reductions' (DR) future states of

the world, .  We write the regret for strategy   Z j as
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where   C Z Xj i( )  is the cost of the strategy   Z j (given by one of the sets of

parameters in Table II) at the uncertainty-space point   Xi ;   pES is the

relative likelihood ascribed to an ES future as opposed to a DAL future, and

  pDR  as the probability ascribed to a DR future;   ZDAL,   ZES , and   ZDR are the

DAL, ES, and DR static policies defined in LSB;   V = Low, High, or Inc labels

the 'Low Variability', 'High Variability', and 'Increasing Variability' cases;

where the sums are over the set of uncertainty-space points   Xi
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representing the appropriate variability (Low, High, or Inc) and climate-

change future (DAL, ES, or DR); and where   ϑDAL,V ,   ϑES,V , and   ϑDR,V  are

the total number of points in each of these sets.  The   C Z Xj i( )  are

annualized global sums of the abatement and damage cost time-series from

the present to 2140, calculated using a 5% discount rate, averaged over a set

of Monte Carlo draws for the stochastic radiative forcing time-series in Eq.

(1).  We use the same set of time-series for all the strategies   Z j we compare

at each uncertainty-space point   Xi .

In Section 3 we also find the most robust adaptive-decision strategies.

In order to find such strategies we define a measure of robustness given by

  

Robustness Z p
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    .       (A2)

and search for the strategy   Z j which gives the smallest value for

  Robustness Z pj DR( )  as a function of   pDR .  This expression is similar to Eq.

(A1) with   pES = 50%, except we take the square of the regret terms and sum



10/6/98

39

over all three variability cases so that our robustness measure is analogous

to a least-squares fit across the uncertainty space.
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TABLES

Climate
Sensitivity

  ∆T2x

Sulfate
forcing

γ SO4

Damage
coefficient

  α1

Innovation
Rate

d

Climate
Change
Future

0.5°C 1.0 3.5% 5% DAL
1.5°C 1.0 0% 2% DAL
1.5°C 1.0 2% 0% DAL
2.5°C 1.0 0% 0% DAL
2.5°C 0.25 0% 0% DAL
1.5°C 1.0 5% 5% ES
2.5°C 1.0 3.5% 2% ES
2.5°C 1.0 2% 5% ES/ES/DR
2.5°C 0.25 3.5% 2% ES
2.5°C 0.25 2% 5% ES
3.5°C 1.0 2% 0% ES
3.5°C 0.25 2% 0% ES
2.5°C 1.0 7% 2% DR
2.5°C 1.0 10% 5% DR
2.5°C 0.25 7% 2% DR
2.5°C 0.25 10% 5% DR
3.5°C 1.0 5% 2% DR
3.5°C 0.25 5% 2% DR
4.5°C 1.0 7% 0% DR
4.5°C 0.25 7% 0% DR

For each 
  
∆T dx2 1, , ,γ αSO4( ) point we also consider three cases for the

damages due to climate variability:   α α η η2 3 2 3, , ,( ) = 0.2%,0%,1,na( ) ,
0.4%,0%,2,na( ) , and 0%,0.33%,na,3( ) , which we label 'Low', 'High', and

'Increasing' damages due to climate variability.

Table I: Uncertainty Space Points.

Parameter Description Values
  R1 First period rate ∞, 100, 60, 40 years

  Dthres Damage trigger 0.1%, 0.25%, 0.4%, 0.6%, 0.75%,
1.2%,1.5%, and 2% GWP

  Kthres Innovation trigger 4, 25, 40, 50, and 65 $/ton-carbon

  R2/1/  R2/2 /  R3/2 Alt. Second Period Rates 20/40/150 years, 20/70/150 years

  T1 Last year for early trigger 2005, 2010, 2020, 2030
  T2 Last year for late trigger 2017, 2025, 2030, 2040

Table II: Strategy parameters.
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FIGURE CAPTIONS
Figure 1:  Climate sensitivity and sulfate forcing pairs 

  
∆ ∆T F2X SO4

,( ) (point
cloud) and the magnitude of white-noise forcing,   σQ , as a function of

  
∆ ∆T F2X SO4

,( ) (contour  lines) estimated from the 1856 to 1995 instrumental
temperature record.

Figure 2: Variability in 1995 of the global-mean temperature as measured
by the cumulative probability distributions of the annual temperature

  ∆T 1995( ), the five-year running average   ∆T 19955( ), and the differences
between the temperature and the five- and thirty-year running averages,

  ∆ ∆T 1995 T 19955( ) − ( ) and   ∆ ∆T 1995 T 199530( ) − ( ). All distributions

calculated using the climate parameters 
  
∆ ∆T F2X SO Q4

, ,σ( ) =
  
2.5 C, 0.7 W m 3.2 W m2 2° −( ), .

Figure 3: Damages due to climate variability as measured by the
cumulative probability distribution (solid lines) for 1995 with two sets of
assumptions about the damage function parameters,   α α η η2 3 2 3, , ,( )  =
  0 2 0 1. %, %, ,na( )  and   0 4 0 2. %, %, ,na( ), and calculated for 1995 and 2020 with
the damage function parameters   0 0 33%, . %, ,na 3( ) . All four distributions

calculated with the climate parameters 
  
∆ ∆T F2X SO Q4

, ,σ( ) =
  
2.5 C, 0.7 W m 3.2 W m2 2° −( ), .  Solid circles show observed damages due to

extreme events from 1960 to 1995.

Figure 4: Flow chart describing the adaptive-decision strategies.

Figure 5: Regret for adaptive-decision strategies and static policies as a
function of the likelihood ascribed to the "Emissions Stabilization" future
(  pES), assuming low SO2 emissions (  rSO2

= 2%) and no likelihood of a
"Drastic Reductions" future (  pDR = 0%).  Robust adaptive strategies shown
with dashed lines.  All strategies labeled with their   R ,D ,K1 thres thres( )
values.  Thick lines show strategies with lowest regret.

Figure 6:  Annual estimated,   D test ( ) , and actual, D t( ), damages for two
cases, the first with 'Low' damages due to variability and significant trend
(  α1 = 3.5%) and the second with 'High' damages due to variability and no
trend (  α1 = 0%), both calculated using the climate parameters

  
∆ ∆T x SO2 4

, ,F Qσ( ) = 
  
2 5 0 7 3 2. , . , .° −( )C W / m W / m2 2  and the IS92a estimate for

SO2 emissions (  rSO2
= 0).

Figure 7: Regret for adaptive-decision strategies and static policies as a
function of the likelihood ascribed to the "Emissions-Stabilization" future
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(  pES), assuming high SO2 emissions (  rSO2
= 0%) and a 2% likelihood of a

"Drastic-Reductions" future (  pDR = 0%).

Figure 8: Expected value of exogenous information distinguishing 'Do-a-
Little' (DAL) and "Emissions-Stabilization" (ES) future states of the world
assuming equal likelihoods for the DAL and ES futures and no likelihood of
a "Drastic Reductions" future (  pDR = 0%), as a function of the SO2 emissions
and the variability.  Unknown variability assumes an equal likelihood for
the 'Low', 'High' and 'Increasing' variability states of the world.

Figure 9: Expected value of exogenous information distinguishing the
'Low', 'High' and 'Increasing' variability states of the world as a function of
future  SO2 emissions (  rSO2

= 0% or 2%) and the likelihood ascribed to a
"Drastic-Reductions" future (  pDR = 0% or 2%), assuming equal likelihood
for the three variability cases.  The three segments in each bar show the
contribution from the expected value of each variability case.
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